

EVALUATION DE L'IMPACT SUR LE RHONE DU REJET DES EAUX RESIDUAIRES EPUREES DU BASSIN VERSANT DU LAC DU BOURGET

Suivi 2016

SOMMAIRE

INTRODUCTION	1
I. Rappel de l'étude 2015	2
II. Conditions expérimentales	3
III. Qualité du rejet	6
III.1 Caractéristiques moyennes	6
III.1.1 Débit	6
III.1.2 Analyse physico-chimique	8
III.1.3 Eléments traces métalliques	9
III.2 Evolution des paramètres sur l'année	11
III.2.1 Variabilité	11
III.2.2 Qualité du rejet en août	11
III.3 Flux de pollution	12
III.4 Comparaison avec les dispositions réglementaires au 29/08/2013	13
IV. Qualité de l'eau du Rhône	15
IV.1 Débit	15
IV.2 Caractéristiques moyennes du fleuve IV.3 Qualité du Rhône en août	16 19
IV.4 Concentrations en métaux et micropolluants organiques	20
V. Impact du rejet	22
V.1 Comparaison des caractéristiques du milieu récepteur entre l'amont et l'aval	22
V.2 Cas du faible débit du Rhône	24
CONCLUSION	28
ANNEXES	29
LISTE DES FIGURES	
Figure 1 I coelination des nainte de compillance	2
Figure 1 Localisation des points de surveillance	3 4
Figure 2 Embarcation radiocommandée Figure 3 Pluviométrie à Voglans	5
Figure 4 Variation horaire du débit du rejet	6
Figure 5 Variations de la pluviométrie et du débit du rejet	7
Figure 6 Débit du Rhône	15
Tigure o Beoff du Idione	1.
LISTE DES TABLEAUX	
Tableau I Types d'analyses réalisées	4
Tableau II Caractéristiques moyennes du rejet	8
Tableau III Concentration en métaux dans le rejet	9
Tableau IV Variabilité des différents paramètres	11
Tableau V Caractéristiques physico-chimiques du rejet au Rhône en août	12
Tableau VI Valeurs moyennes des flux de pollution	13
Tableau VII Comparaison des concentrations aux normes de l'arrêté préfectoral	14
Tableau VIII Débit du Rhône au point de rejet	15
Tableau IX Caractéristiques moyennes de l'eau du Rhône	17
Tableau X Classes de qualité de l'eau douce pour les paramètres microbiologiques	18
Tableau XI Classes de qualité de l'eau douce pour les MEST	18
Tableau XII Classes de qualité physico-chimique selon les termes de la DCE	18
Tableau XIII Caractéristiques physico-chimiques du Rhône en août	19
Tableau XIV Concentration en métaux dans l'eau du Rhône Tableau XV Statistiques descriptives du flouve	20
Tableau XV Statistiques descriptives du fleuve	22 25
Tableau XVI Caractéristiques du Rhône et du rejet en « faible » débit Tableau XVII Caractéristiques du Rhône et du rejet en « faible » débit (2ème campagne)	26
Tableau XVIII Caractéristiques du Rhône et du rejet en « faible » débit (3 ème campagne)	27

GLOSSAIRE

DBO : Demande biochimique en oxygène MESO : Matières en suspension organiques DCO : Demande chimique en oxygène MEST : Matières en suspension totales

Déter. Anio. : Détergents anioniques NK : Azote Kjeldhal Hydro totaux : Hydrocarbures Totaux P tot : Phosphore total

Référence pour citation

Naffrechoux V., Fanget P., Naffrechoux E.

Evaluation de l'impact sur le Rhône du rejet des eaux résiduaires épurées du bassin versant du lac du Bourget

LCME, Université Savoie Mont Blanc, 2016

INTRODUCTION

Dans le cadre de l'autorisation de rejet du Préfet de Savoie, la qualité physicochimique et bactériologique des eaux usées épurées du bassin versant du Lac du Bourget et des eaux réceptrices du fleuve Rhône est évaluée par des campagnes mensuelles. Les résultats du suivi annuel, débuté en juillet 1980 et réalisé par le laboratoire de chimie moléculaire et environnement (LCME) de l'Université Savoie Mont Blanc, sont archivés en Préfecture de Savoie (Direction de l'Administration Territoriale et de l'Environnement, Bureau de l'Environnement, de l'Aménagement et de l'Urbanisme) et au siège du Comité InterSyndical pour l'Assainissement du Lac du Bourget (CISALB) à Chambéry.

Les résultats des campagnes de surveillance de l'année 2016 sont présentés dans ce document. L'étude a été réalisée selon les directives d'application de l'arrêté préfectoral du 29 août 2013.

L'objectif est d'évaluer l'impact physico-chimique et microbiologique sur le fleuve Rhône du rejet des eaux usées épurées par :

- le suivi de la qualité des effluents traités des agglomérations de Chambéry, Aix les Bains et du Bourget du Lac au point de rejet dans le Rhône (détermination des caractéristiques physico-chimiques et comparaison avec les dispositions réglementaires de l'arrêté préfectoral),
- le suivi de la qualité de l'eau du Rhône en amont proche et aval éloigné de ce point.

Une comparaison avec les résultats des études antérieures permet :

- l'examen des modifications éventuelles des caractéristiques du rejet en lien avec les modifications des traitements d'épuration opérés dans les usines de dépollution (UDEP) ou la variation de charge de pollution entrant dans ces UDEP,
- l'évolution pluriannuelle de la qualité du milieu récepteur.

I - RAPPEL DE L'ETUDE 2015

Dans le cadre de la 33^{ème} année du contrôle des caractéristiques des eaux épurées du bassin versant du Lac du Bourget et de leur impact sur la qualité du Rhône, douze campagnes mensuelles de prélèvements ont été effectuées en 2015 selon les directives de l'arrêté préfectoral du 29 août 2013.

L'année 2015 se caractérise par une pluviométrie (1291,8 mm) supérieure de 5,1% à celle de l'année précédente (1228,8mm) et de 0,9% à la référence 1974-2004 (1280 mm). Le débit du Rhône, milieu naturel récepteur du rejet, vaut en moyenne 418 m³/s (en baisse de 2,6% par rapport à 2014), ce qui implique une dilution importante des composés présents dans le rejet aux points de contrôle situé à l'aval éloigné du lieu de déversement (point T2).

Depuis 2012, la qualité du rejet s'est améliorée. Cette année, ceci se traduit par un seul dépassement des paramètres réglementés par l'arrêté préfectoral et par une baisse des flux. Le flux de nitrates est équivalent à celui de 2014, plus faible que celui 2013, mais toujours plus élevé qu'avant 2012 en raison de la nitrification efficace de l'azote dans l'UDEP de Chambéry Métropole.

Selon le système d'évaluation de la qualité des eaux, le Rhône à l'amont du rejet est de qualité microbiologique moyenne pour E. coli et les entérocoques. En revanche, la qualité physico-chimique est très bonne à bonne (déclassement observé pour les MEST et le cuivre).

Quel que soit le débit du Rhône, la concentration en ammonium est systématiquement supérieure en T2. Lors des faibles débits du Rhône (campagne du 17 novembre), une dégradation bactériologique significative est constatée.

II - CONDITIONS EXPERIMENTALES

La figure 1 détaille les points de prélèvements avec le nombre de campagnes effectuées pendant la période de surveillance.

Figure 1 : Localisation des points de surveillance

Le contrôle 2016 porte sur douze campagnes mensuelles de prélèvements dans le Rhône et sur douze bilans mensuels de pollution du rejet.

La position des points R, S, T1 et T2 est définie dans l'arrêté préfectoral. Les points S, T1 et T2 sont échantillonnés dans le fleuve à trente centimètres de profondeur. Le point S est échantillonné en amont du rejet. Le point T1 est échantillonné dans la veine de diffusion du rejet. Le point T2 est échantillonné en 3 points également répartis sur la demi-largeur gauche du fleuve. En effet, le traçage du rejet dans le fleuve (étude CEA 2001) a démontré un écoulement en rive gauche du fleuve. Les échantillons d'eau du Rhône sont prélevés à l'aide d'une embarcation radiocommandée (figure 2). Le point R (rejet des effluents traités) est échantillonné à la sortie de la galerie au moyen d'un préleveur automatique. L'échantillon moyen analysé est reconstitué proportionnellement au débit de l'effluent à partir de 24 flacons de 300 mL correspondant à des prélèvements de 75 mL toutes les quinze minutes. Tous les

échantillons sont prélevés par pompage péristaltique, limitant les modifications de la qualité physico-chimique de l'eau.

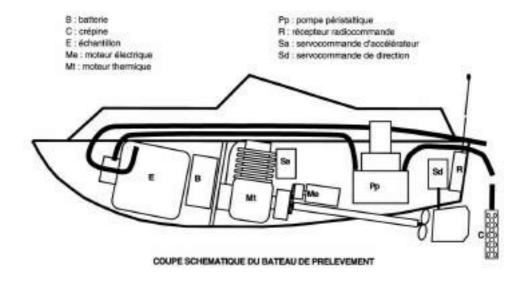


Figure 2: embarcation radiocommandée

Les mesures effectuées sur les échantillons prélevés sont détaillées dans le tableau I.

stations S, T1 et T2	station R	expression des résultats
température	température	degrés Celsius
pН	pН	unités
oxygène dissous	oxygène dissous	mgO_2/L
conductivité	conductivité	μS/cm
matières en suspension totales	matières en suspension totales	mg/L
matières en suspension	matières en suspension	mg/L
organiques	organiques	
demande chimique en oxygène	demande chimique en oxygène	mgO_2/L
demande biochimique en oxygène	demande biochimique en oxygène	mgO_2/L
azote Kjeldhal	azote Kjeldhal	mgN/L
azote ammoniacal	azote ammoniacal	$mgNH_4/L$
nitrates	nitrates	mgNO ₃ /L
phosphates *	phosphates *	mgP/L
phosphore total	phosphore total	mgP/L
détergents anioniques *	détergents anioniques *	μg/L
hydrocarbures totaux *	hydrocarbures totaux *	μg/L
métaux totaux *	métaux totaux *	μg/L
coliformes	coliformes **	ufc/100mL
E. coli	E. coli **	NPP/100mL
entérocoques	entérocoques **	NPP/100mL
chlorures		mg/L
sulfates		mgSO ₄ /L

Tableau I : Types d'analyses réalisées

(*analyses semestrielles et faible débit, **mai à septembre)

En accord avec les services de l'état, plusieurs modifications ont été apportées au protocole de suivi décrit dans l'arrêté préfectoral :

- i) les analyses bactériologiques dans le rejet sont réalisées de mai à septembre.
- ii) la qualité physico-chimique et toxique des sédiments du fleuve en S et en T1 est évaluée tous les 3 ans (soit en 2017).
- iii) les IBD et IBGN sont suivis annuellement dans le fleuve.

Ces modifications prendront effet en 2017, sauf le contrôle de la qualité bactériologique du rejet, effectué en septembre 2016.

Les précipitations météoriques influencent le débit d'eau rejetée au Rhône, transitant dans la galerie, par infiltration naturelle des eaux de pluie et de ruissellement dans l'ouvrage, et par collecte d'une partie des eaux pluviales dans les effluents des usines de dépollution (UDEP). La pluviométrie 2016 (1225,9 mm) est en baisse de 5,1 % par rapport à l'année 2015 (1291,8 mm) et équivalente à 2014 (1228,8 mm). Cette valeur est plus basse que la moyenne calculée pour les 42 dernières années (µ1974-2015 =1251 mm). Les variations de hauteur de la lame d'eau tombée à Voglans (Savoie) au cours de l'année sont représentées sur la figure 3.

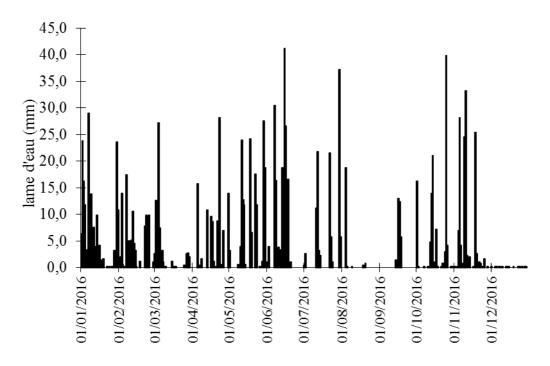


Figure 3 : Pluviométrie à Voglans (2016)

III - QUALITE DU REJET

Les eaux usées épurées par les UDEP de Chambéry Métropole (Chambéry-Bissy) et de Grand Lac (Aix les Bains + Le Bourget du Lac) sont échantillonnées au point R durant 24 heures, par prélèvement fractionné toutes les 15 minutes.

III.1. Caractéristiques moyennes

III.1.1. Débit

Les débits moyens journaliers sont calculés, après tarage du limnimètre à sonde de pression installé en sortie de galerie, à partir des hauteurs d'eau relevées mensuellement. Le débit Q du rejet en m^3/s est calculé à partir de la hauteur d'eau h mesurée en cm selon l'équation suivante : $Q = 1.43.10^{-4}$ x $h^2 + 2.45.10^{-2}$ x h - 1.39.

Le débit présente généralement une valeur journalière minimale proche de 0,2 m³.s⁻¹ aux environs de 8-9h et une valeur maximale légèrement inférieure à 0,8 m³.s⁻¹, sauf en cas d'apport d'eaux parasites suite aux précipitations météoriques comme l'illustre la figure 4 (période de temps sec les 2 et 3 novembre et période de temps de pluie les 4,5 et 6 novembre).

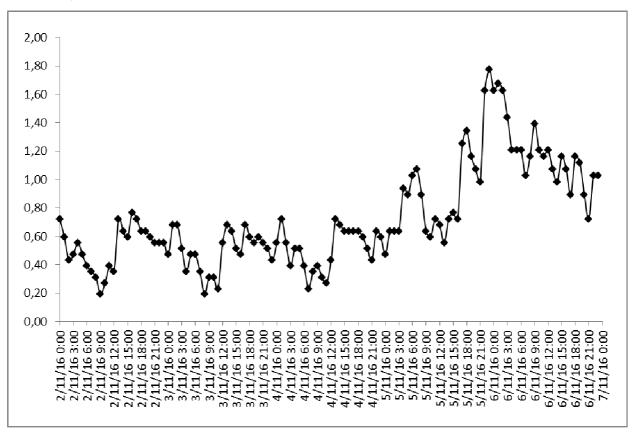


Figure 4 : Variation horaire du débit du rejet (m³.s⁻¹)

Le débit moyen annuel du rejet est égal à 0,78 m³/s, en hausse par rapport à 2015 (0,73 m³/s), malgré une diminution de la pluviométrie annuelle. Ce débit moyen est toutefois équivalent à 2014 (0,76 m³/s) et en diminution comparativement à la période 1986-2015 (0,85 m³/s), en adéquation avec une baisse de la pluviométrie.

Le débit moyen des jours de contrôle en 2016 vaut 0,79 m³/s, comparable au débit moyen annuel. Il est supérieur à 2015 (0,73 m³/s) et 2014 (0,76 m³/s), ce qui pourrait induire une augmentation des flux annuels rejetés les jours de contrôle à concentration constante des solutés dans le rejet.

La comparaison des variations du débit du rejet et de la pluviométrie enregistrée à la station météorologique de Voglans (figure 5) souligne bien les caractéristiques hydrauliques des réseaux d'assainissement (partiellement unitaires) et de la galerie sous l'Epine (infiltration d'eaux claires). Les pics de débit sont systématiquement corrélés à des fortes précipitations.

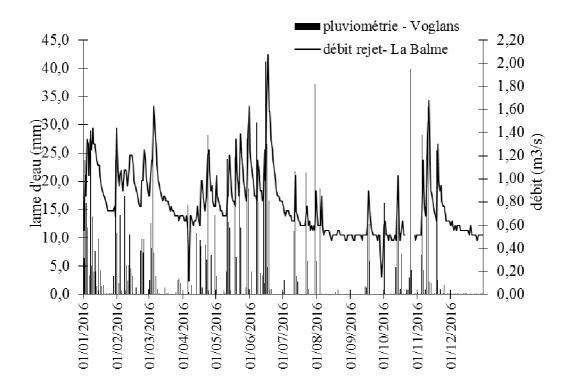


Figure 5 : Variations de la pluviométrie et du débit du rejet

III.1.2. Analyse physico-chimique

Pour chacun des douze bilans de l'année 2016, les analyses ont été réalisées sur un échantillon moyen 24h, reconstitué proportionnellement au débit rejeté. Le tableau II présente la moyenne, l'écart-type, le minimum et le maximum de chaque paramètre mesuré. Pour les paramètres contrôlés semestriellement (phosphates, détergents anioniques et hydrocarbures totaux), la moyenne est ici calculée sur trois valeurs (la campagne de septembre a été réalisée en faible débit du Rhône). Les paramètres microbiologiques n'ont été quantifiés qu'en septembre (cf p 5).

PARAMETRES	unités	MOYENNE 2016	ECART TYPE	MINI	MAXI	MOYENNE 2015	MOYENNE 2014	MOYENNE 2013
DEBIT	m ³ /s	0,79	0,23	0,53	1,28	0,73	0,76	0,81
TEMPERATURE	degré C	16,1	3,0	12,3	20,6	16,2	16,5	15,3
O ₂ DISSOUS	mg/L	4,3	1,3	2,5	6,7	4,0	4,1	4,5
pН	unités	7,8	0,2	7,6	8,0	7,4	7,3	7,0
CONDUCTIVITE	μS/cm	942	110	786	1110	918	917	900
MEST	mg/L	9,5	2,1	6,7	13,4	13,3	12,0	13,3
MESO	mg/L	7,4	2,5	3,8	12,4	9,7	9,7	10,0
DBO	mg/L	10	5,7	4	24	13	15	14
DCO effluent brut	mg/L	41	8,7	26	52	42	50	51
DCO effluent filtré	mg/L	32	6,9	21	45	30	33	40
NK	mg/L	15,3	5,3	7,6	24,8	15,1	15,1	11,0
$\mathrm{NH_4}^+$	mg/L	16,2	6,8	5,3	29,0	16,5	17,6	13,3
NO_3^-	mg/L	31,3	9,1	20,6	46,9	30,9	29,7	31,0
PO ₄ ³⁻ *	mg/L	0,39	/	0,25	0,53	0,32	0,73	0,30
P total	mg/L	0,53	0,22	0,19	0,84	0,45	0,74	0,47
DET. ANIO. *	μg/L	205	/	165	229	181	208	507
HYD. TOTAUX *	μg/L	< 50	/	< 50	< 50	<100	<100	<100
Coliformes	ufc/100mL	/				49250	109242	105250
E. coli	NPP/100 mL	/				35500	147100	109000
Entérocoques	NPP/100 mL	/				5250	7100	8625
*analyses semestriell	es							

Tableau II : Caractéristiques moyennes du rejet

Les valeurs moyennes sont équivalentes à celles observées l'année précédente et confirment l'amélioration de la qualité physico-chimique du rejet depuis la rénovation de l'usine de dépollution de Chambéry Métropole, mise en service au printemps 2011.

La part dissoute et colloïdale de la pollution oxydable est à nouveau plus faible depuis la modification de l'UDEP de Chambéry : la DCO de l'échantillon filtré vaut 32 mgO₂/L contre 55 mgO₂/L les années antérieures à 2012. La pollution particulaire comporte 78% de matière organique. La majeure partie de la matière organique des eaux usées a été biodégradée par les micro-organismes des usines de dépollution biologique raccordées à la

galerie. Seule une fraction faible de la matière organique oxydable du rejet est encore biodégradable dans les conditions de l'essai (5 jours d'incubation à 20°C, à l'obscurité, en milieu aérobie), comme le révèle le rapport moyen DCO/DBO (=4,1), dont la valeur est plus élevée que sur la période 2000-2015 (DCO/DBO≈3,5). La concentration en nitrates est proche de 30 mgNO₃⁻/L en moyenne depuis 2012. Cette valeur, plus élevée qu'antérieurement, est liée à la meilleure oxydation de la matière organique, et donc une nitrification de l'azote organique et ammoniacal, au sein de l'UDEP de Chambéry Métropole.

La micropollution organique est réglementée par deux familles de molécules (hydrocarbures totaux et détergents anioniques) dans l'arrêté préfectoral d'autorisation de rejet. La concentration en hydrocarbures totaux est toujours inférieure à la limite de détection de la méthode analytique normalisée (NF EN ISO 9377-2), abaissée à 50µg/L depuis cette année. La concentration en détergents anioniques est constante depuis 2014, proche de 200µg/L, correspondant à une observation de plus en plus rare de moussage, malgré un écoulement turbulent engendré par l'ouvrage de sortie de galerie.

III.1.3. Eléments traces métalliques

Deux échantillons ont été prélevés les 19 avril et 18 octobre 2016 pour l'analyse des métaux totaux (normes NF EN ISO 17294-2, NF EN ISO 17852) dans le cadre des analyses semestrielles définies par l'arrêté préfectoral. Les résultats des analyses sont présentés dans le tableau III.

		19/04/2016	18/10/2016
Al	μg/L	28	27
As	μg/L	<5	<5
Cd	μg/L	<0,2	<0,2
Cr	μg/L	<5	<5
Cu	μg/L	16	21
Fe	μg/L	257	600
Hg	μg/L	<0,05	<0,05
Ni	μg/L	<10	<10
Pb	μg/L	<0,5	0,9
Zn	μg/L	49	65

Tableau III : Concentration en métaux dans le rejet

Dans l'échantillon d'avril, l'aluminium, le cuivre, le fer et le zinc sont quantifiables. Dans celui d'octobre, le plomb est également quantifiable.

Les concentrations en fer ($257 \mu g/L$ et $600 \mu g/L$) restent comparables à celles mesurées les années précédentes. Elles sont dues à l'utilisation de sels de fer pour le traitement de coagulation mis en place dans l'usine de dépollution de Chambéry. Ces valeurs de fer total correspondent à une fraction particulaire d'hydroxydes ferriques.

Les concentrations en aluminium et zinc sont toujours de l'ordre de grandeur de celles classiquement mesurées dans une eau résiduaire urbaine épurée.

Les métaux cuivre et plomb sont présents à des concentrations faibles. Les valeurs sont par exemple très nettement inférieures aux limites de qualité d'un rejet d'Installation Classée pour la Protection de l'Environnement selon l'arrêté du 02/02/1998 ($500 \,\mu g/L$).

III.2. Evolution des paramètres sur l'année

III.2.1. Variabilité

Le coefficient de variation (en %) permet d'estimer la variabilité des paramètres contrôlés mensuellement. La variabilité est globalement équivalente à celles des années précédentes, confirmant un rendement d'épuration assez constant dans les trois usines de dépollution raccordées à la galerie de rejet au Rhône. Les variations les plus importantes sont observées pour la DBO traduisant les modifications de qualité de la matière organique présente dans les influents des UDEP.

paramètre	CV	paramètre	CV	paramètre	CV
Débit	29	DCO brut	21	NK	35
Hq	2	DCO filtré	22	NO ₃ -	29
Conductivité	12	DBO	55	NH ₄ ⁺	42
Température	18	MEST	22	P total	41
O ₂ Dissous	30	MESO	34		

Tableau IV : Variabilité des différents paramètres

III.2.2 Qualité du rejet en août

La qualité physico-chimique du rejet le 23 août (période correspondant à une activité industrielle réduite mais à une fréquentation touristique plus importante) est comparée à la qualité moyenne annuelle (tableau V). Le mois d'août a été très sec (20,4 mm de pluie dus essentiellement à une précipitation intense (18,8 mm) le 4 août) n'entraînant donc aucune dilution des effluents traités par des eaux d'infiltration dans la galerie lors de la campagne de prélèvement. Les valeurs des paramètres globaux de quantification de la pollution (DCO, DBO et MESO) traduisent un rejet de bonne qualité en période estivale même si leurs valeurs sont plus élevées que celles de la moyenne annuelle.

Paramètres	23/08/2016	Moyenne année 2016 (août exclus)
Débit (m ³ /s)	0,53	0,82
Température (degré C)	20,6	15,7
O ₂ dissous (mg/L)	2,9	4,5
pH (unité)	8,0	7,8
Conductivité (µS/cm)	1059	931
MEST (mg/L)	9,2	9,6
MESO (mg/L)	8,6	7,3
DBO ₅ (mg/L)	24	9
DCO brute (mg/L)	52	40
DCO filtrée (mg/L)	45	31
NK (mg/L)	14,9	15,3
NO ₃ - (mg/L)	46,0	30,0
NH_4^+ (mg/L)	18,9	16,0
P total (mg/L)	0,72	0,51

Tableau V : Caractéristiques physico-chimiques du rejet en août

III.3. Flux de pollution

Les valeurs moyennes des flux rejetés au Rhône sont calculées d'après le volume journalier mesuré en sortie de la galerie et les valeurs de concentration des différents paramètres physico-chimiques (annexe I).

La comparaison des flux 2016 et des flux moyens 1997-2015 montre une baisse des flux rejetés sauf pour les nitrates. Le flux de nitrates est supérieur à la période antérieure à 2012 en raison d'une nitrification plus efficace de l'azote dans l'UDEP de Chambéry, corrélée à une bonne oxydation de la pollution organique carbonée.

PARAMETRES	FLUX (kg/j)	FLUX (kg/j)	FLUX moyen (kg/j)
	2016	2015	1997-2015
MEST	648	839	1935
MESO	505	612	2034
DBO (kg O ₂ /j)	683	820	1596
DCO (kg O ₂ /j)	2798	2649	5179
NK (kg N/j)	1044	952	1299
NO_3 (kg NO_3 /j)	2136	1949	951
$\mathbf{NH4}^+$ (kg $\mathbf{NH4}^+/\mathbf{j}$)	1106	1041	
P total (kg P/j)	36	28	91
PO ₄ ³ - * (kg P/j)	27	20	
Détergents anioniques *	14	11	
Hydrocarbures totaux *	<3	<6	The Mark Bloom

(* moyenne sur 3 valeurs : les 2 valeurs semestrielles et la valeur du faible débit Rhône)

Tableau VI: Valeurs moyennes des flux de pollution

III.4. Comparaison avec les dispositions réglementaires (arrêté du 29/08/2013)

Le tableau VII présente les valeurs des paramètres réglementés par l'arrêté préfectoral du 29 août 2013 (matières en suspension totales, matières organiques oxydables et biodégradables, azote Kjeldhal), obtenues pour chaque campagne en comparaison aux valeurs maximales autorisées.

Cet arrêté définit les dispositions réglementaires pour un volume annuel rejetable de 26 462 500 m³ soit un débit moyen de 72 500 m³/j et un débit maximal de 176 500 m³/j.

Aucun dépassement n'est constaté sur l'année 2016.

	Q	MEST	DBO	DCO	NK
	m³/j	mg/L	mg/L	mg/L	mg/L
Concentration 24h maximale					
autorisée (charge de référence)		35	25	125	40
Date de contrôle		(Concentratio	ns mesurées	
19/01/16	57973	12,6	9	40	13,6
16/02/16	64832	9,6	15	33	12,7
22/03/16	49421	9,6	7	44	19,2
19/04/16	51149	7,6	4	30	10,2
17/05/16	50529	8,0	6	36	9,7
21/06/16	87467	8,0	5	26	7,6
19/07/16	41925	8,0	12	47	13,0
23/08/16	37645	9,2	24	52	14,9
20/09/16	38820	6,7	7	49	16,6
18/10/16	48639	10,8	16	49	23,6
22/11/16	56302	11,0	9	38	17,6
13/12/16	36919	13,4	10	51	24,8

Tableau VII : Comparaison des concentrations aux normes de l'arrêté préfectoral

IV - QUALITE DE L'EAU DU RHONE

IV.1. Débit

La figure 6 présente les variations du débit moyen journalier autour de la moyenne annuelle du Rhône enregistré à la station de Brens (données CNR).

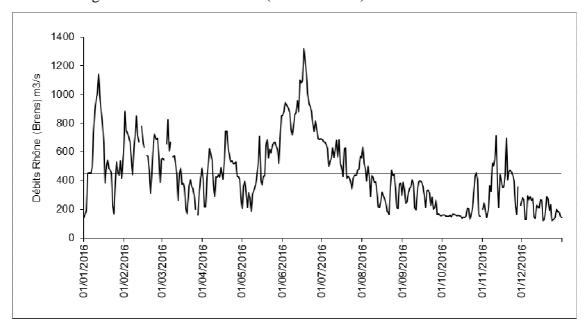


Figure 6 : Débit du Rhône à la station de Brens (2016)

Les valeurs (disponibles sur le site <u>www.rdbrmc.com</u>) du débit instantané du Rhône au moment du prélèvement sont enregistrées à la station de Brens (tableau VIII). La valeur moyenne des jours de contrôle est de 509 m³/s, supérieure à la moyenne annuelle 2016 (450 m³/s). Le débit moyen annuel est légèrement supérieur à celui de 2015 (418 m³/s) et à celui de la période de référence 1956-1996 (437 m³/s).

DATE	Débit	Débit moyen	DATE	Débit	Débit moyen
	instantané	mensuel		instantané	mensuel
	(m^3/s)	(m^3/s)		(m^3/s)	(m^3/s)
19/01/16	550	549	19/07/16	611	539
16/02/16	645	629	23/08/16	481	352
22/03/16	385	428	20/09/16	334	288
19/04/16	725	475	18/10/16	134	193
17/05/16	430	485	22/11/16	608	374
21/06/16	1050	906	13/12/16	160	205

Tableau VIII : Débit du Rhône au point de rejet

IV.2. Caractéristiques moyennes du fleuve

Les valeurs moyennes des différents paramètres mesurés aux points amont du rejet (S) et aval éloigné (T2) sont présentées dans le tableau IX.

Les critères d'évaluation de la qualité de l'eau du Rhône sont les suivants :

- état écologique des cours d'eau pour les paramètres physico-chimiques généraux,
- SEQ V2 pour les paramètres ne figurant pas dans l'évaluation de l'état écologique.

Le Rhône au point S, en amont du rejet, est de **qualité moyenne pour les coliformes thermo-tolérants** et **médiocre pour les streptocoques fécaux** (tableau X). La pollution bactériologique rend le fleuve impropre à la baignade, y-compris à l'amont du rejet des eaux usées épurées du bassin-versant du Lac du Bourget.

Pour les particules en suspension MEST (tableau XI), le fleuve est de qualité moyenne en S et de qualité bonne en T2 (en raison d'une vitesse d'écoulement du fleuve plus faible à l'aval et d'une probable sédimentation des particules en suspension entre T1 et T2).

Pour les autres paramètres physico-chimiques mesurés en S et T2, le Rhône est en très bon état selon les critères de la DCE (tableau XII) sauf pour le pH maximum pour lequel il est en bon état.

PARAMETRES	unités		MOYENNE 2016	écart-type	minimum	maximum		MOYENNE 2015	MOYENNE 2014		MOYENNE 2013
		S	12,8	5,3	5,9	20,8	S	13,4	13,9	S	12,4
TEMPERATURE	degré C						T2bis	8,8	14,1	T1	12,3
	T2	13,2	5,6	6,0	21,6	T2	13,6	14,2	<i>T</i> 2	12,7	
		S	10,5	1,1	8,8	12,0	S	10,3	10,0	S	10,4
O ₂ DISSOUS	mg/L						T2bis	11,4	10,1	<i>T1</i>	10,4
		T2	10,6	1,2	8,8	11,9	T2	10,4	10,1	<i>T2</i>	10,3
		S	8,1	0,1	7,9	8,3	S	7,8	7,6	S	7,4
pН	unités						T2bis	7,8	7,6	T1	7,2
		T2	8,1	0,1	8,0	8,3	T2	7,8	7,6	<i>T</i> 2	7,4
	,	S	321	24,9	286	360	S	316	333	S	333
CONDUCTIVITE	μs/cm	то	220	27.4	200	275	T2bis	356	339	<i>T1 T2</i>	369
		T2	328	27,4	289	375	T2	321	339		339
MEST	ma/I	S	26,7	28,5	3,3	101,2	S T2bis	13,1 9,2	25,9 26,4	S T1	23,6 19,1
MESI	mg/L	T2	23,3	22,1	1,7	64,5	T2	9,2 10,8	27,6	T2	19,1 16,5
		S	23,3	1,3	0,0	4,1	S	1,0	2,6	S	2,3
MESO	mg/L	3	2,1	1,5	0,0	4,1	T2bis	1,6	2,5	T1	2,5
1,12,50		T2	1,9	1,2	0,0	4,0	T2	1,0	2,7	<i>T2</i>	1,8
		S	2	0,0	<2	2	S	<2	<2	S	<2
DBO	mg/L	~	_	-,-		_	T2bis	<2	<2	<i>T1</i>	<3
		T2	2	0,4	<2	3	<i>T</i> 2	<2	<2	<i>T</i> 2	<2
		S	3	1,2	2	6	S	3	4	S	4
DCO	mg/L						T2bis	3	4	T1	6
		T2	3	1,4	2	7	T2	3	4	<i>T</i> 2	4
		S	0,2	0,04	<0,2	0,3	S	0,2	0,3	S	0,3
NK	mg/L						T2bis	0,3	0,3	<i>T1</i>	0,8
		T2	0,3	0,07	<0,2	0,4	<i>T</i> 2	0,3	0,2	<i>T2</i>	0,3
		S	3,2	0,7	2,3	4,4	S	3,0	3,2	S	3,1
NO ₃ -	mg/L						T2bis	3,7	3,2	T1	4,6
		T2	3,3	0,8	2,2	4,4	T2	3,1	3,1	<i>T</i> 2	3,1
NITT I	7.	S	0,04	0,02	0,01	0,07	S	0,04	0,05	S	0,05
NH ₄ ⁺	mg/L	то	0.10	0.07	0.04	0.20	T2bis		0,15	T2	0.00
		T2 S	0,10	0,07	0,04	0,30	T2	0,08	0,09	S	0,09
P total	mg/L	ာ	0,02	0,01	0,01	0,03	S T2bis	0,02	0,02 0,02	T1	0,02 0,04
r wal	mg/L	T2	0,02	0,01	0,01	0,04	T2	0,02	0,02	T2	0,04
		S	9,5	2,2	5,9	14	S	10,8	9,2		0,02
Chlorures	mg/L	5	7,5	2,2	5,7	17	T2bis	12,5	9,6		
		T2	9,8	2,3	6,0	14	T2	11,1	9,6		
		S	34,9	10,6	19,4	48,2	S	40,1	35,9		
Sulfates	mgSO ₄ /L		*	•			T2bis	36,8	37,2		
		T2	35,8	10,9	18,7	48,2	T2	41,1	37,8		
		S	2588	4514	200	16000	S	530	3353	S	1981
COLIFORMES	N/100 mL						T2bis	1725	3821	T1	27875
		T2	2099	2696	68	8000	T2	634	2908	<i>T2</i>	1733
		S	905	1217	<38	3600	S	403	1572	S	720
E. COLI	N/100 mL						T2bis	475	2712	T1	19858
		T2	1616	2349	<38	6900	T2	512	1157	<i>T</i> 2	565
		S	369	771	<38	2700	S	181	322	S	60
ENTEROCOQUES	N/100 mL						T2bis	164	299	T1	1007
	Toblo	T2	381	539	<38	1600	<i>T</i> 2	110	288	<i>T2</i>	81

Tableau IX : Caractéristiques moyennes de l'eau du Rhône

Classe de qualité	Très bonne	Bonne	Moyenne	Médiocre	Mauvaise
Classe de qualite	Bleu	Vert	Jaune	Orange	Rouge
coliformes thermotolérants (u/100ml)	20	100	1000	2000	
streptocoques fécaux (u/100ml)	20	100	250	400	

Tableau X : Classes de qualité de l'eau douce pour les paramètres microbiologiques

Classe de qualité	Bleu	Vert	Vert Jaune		Rouge
MES (mg/L)	5	25	38	50	

Tableau XI : Classes de qualité de l'eau douce pour les MEST

Limites des classes d'état	Très bon	Bon	Moyen	Médiocre	Mauvais
O ₂ dissous (mgO ₂ /L)	8	6	4	3	
DBO ₅ (mgO ₂ /L)	3	6	10	25	
Phosphore total (mgP/L)	0,05	0,2	0,5	1	
NH ₄ ⁺ (mgNH ₄ ⁺ /L)	0,1	0,5	2	5	
NO ₃ - (mgNO ₃ -/L)	10	50			
pH minimum	6,5	6	5,5	4,5	
pH maximum	8,2	9	9,5	10	

Tableau XII : Classes de qualité pour les paramètres physico-chimiques selon la DCE

IV.3. Qualité du Rhône en août

	23/0	8/2016	Moyenne 20	16 (sauf août)	
Paramètres	S	T2	S	T2	
Débit (m³/s)	4	-81	512		
Température (degré C)	20,8	21,6	12,0	12,4	
O ₂ dissous (mg/L)	8,8	8,8	10,6	10,7	
pH (unité)	8,2	8,2	8,1	8,1	
Conductivité (µS/cm)	293	297	324	331	
MEST (mg/L)	15,4	13,2	27,7	24,2	
MESO (mg/L)	1,0	1,2	2,2	2,0	
DBO ₅ (mg/L)	2	3	2	2	
DCO (mg/L)	2	3	3	3	
NK (mg/L)	<0,2	<0,2	0,2	0,3	
NO ₃ - (mg/L)	2,7	2,6	3,3	3,3	
NH ₄ ⁺ (mg/L)	0,03	0,07	0,04	0,10	
P total (mg/L)	0,03	0,03	0,02	0,02	
Chlorures (mg/L)	10	10	9,5	9,7	
Sulfates (mgSO ₄ /L)	48,2	48,2	33,6	34,7	
Coliformes (ufc/100mL)	240	250	2801	2267	
E. coli (NPP/100mL)	260	510	963	1716	
Entérocoques (NPP/100mL)	<38	<38	399	412	

Tableau XIII : Caractéristiques physico-chimiques du Rhône en août

La qualité du Rhône en août est comparable au reste de l'année à l'exception de l'oxygénation (plus faible en raison d'une température supérieure, défavorable à la solubilité des gaz), de la conductivité (valeurs plus élevées aux mois de janvier, février et mars) et des sulfates. La qualité microbiologique et la teneur en matières particulaires du fleuve sont meilleures en août.

Les composés présents dans le rejet des eaux usées épurées n'entraînent pas, au vu des paramètres analysés, de modification significative de la qualité de l'eau du fleuve par rapport au reste de l'année.

IV.4. Concentrations en métaux et micropolluants organiques

Les concentrations des ETM mesurés dans le fleuve sont présentées dans le tableau XIV.

		19/0	4/2016	18/10	0/2016
		S	T2	S	T2
Al	μg/L	287	277	183	34,8
As	μg/L	0,73	0,70	1,4	1,2
Cd	μg/L	<0,02	< 0,02	<0,02	< 0,02
Cr	μg/L	0,88	0,73	<0,5	<0,5
Cu	μg/L	4,4	3,3	3,6	6,3
Fe	μg/L	375	301	237	49,0
Hg	μg/L	<0,01	< 0,01	<0,01	<0,01
Ni	μg/L	1,4	1,2	<1	<1
Pb	μg/L	0,75	0,54	0,45	0,12
Zn	μg/L	4,3	4,3	<2	5,9

Tableau XIV: Concentration en métaux dans l'eau du Rhône

Les concentrations en cadmium et mercure sont inférieures à la limite de détection de la technique analytique (spectrométrie ICP/MS et spectrométrie de fluorescence atomique pour le mercure) pour le contrôle du 19 avril. Le 18 octobre, cadmium, chrome, mercure, nickel et zinc (pour S) ne sont pas quantifiables.

Les valeurs plus élevées en fer et aluminium correspondent à la présence de colloïdes et particules d'hydroxydes de fer et d'argiles alumino-silicatés. En effet, dans un échantillon d'eau naturelle non filtrée, la plus grande partie de l'aluminium se présente sous forme de particules ; la fraction dissoute (incluant des formes labiles à faible poids moléculaire) est quasi négligeable. Les argiles résultant de l'altération de minéraux riches en aluminium (Micas et Feldspaths) sont la source principale d'aluminium colloïdal dans les eaux naturelles. De même, le fer présent dans une eau de surface oxygénée correspond aux formes particulaires oxydées de ce métal (de type Fe(OH)₃ hydraté).

Les critères d'évaluation du bon état chimique sont ceux de la liste des normes de qualité environnementales (NQE) de la directive 2008/105/CE DU PARLEMENT EUROPEEN ET DU CONSEIL du 16 décembre 2008. Pour les paramètres ne figurant pas dans cette liste les NQE et VGE appliquées sont celles proposées par l'INERIS ou de la circulaire du 23 octobre 2012.

Les eaux du Rhône sont en bon état chimique sauf pour le cuivre pour lequel elles présentent un déclassement lors des deux campagnes. Concernant les micropolluants organiques réglementés par l'arrêté préfectoral d'autorisation de rejet, la concentration en hydrocarbures totaux dans le Rhône est inférieure à la limite de détection de la méthode analytique normalisée (NF EN ISO 9377-2).

V - IMPACT DU REJET

V.1. Comparaison des caractéristiques du milieu récepteur entre l'amont et l'aval

Le test statistique de Student avec variances inconnues mais supposées égales pour petits échantillons¹ permet la comparaison de la moyenne des valeurs de chaque paramètre mesuré à différentes stations. L'impact du rejet a été évalué par la comparaison entre S et T2. Les résultats de ce test permettent de juger de l'influence du lieu de prélèvement sur la qualité moyenne de l'eau du Rhône évaluée par les différents paramètres physico-chimiques et bactériologiques. La probabilité d'observer une différence entre les points d'échantillonnage correspond au seuil de confiance du test statistique. Le seuil pour conclure à une différence de qualité entre les points est fixé à 95%.

La comparaison est réalisée entre S et T2. A l'issue du test de comparaison, les moyennes sont statistiquement équivalentes avec un risque d'erreur inférieur à 5%, sauf pour NH₄⁺ (tableau XV).

La différence observée pour NH₄⁺ est systématique entre S et T2. Elle n'est toutefois corrélée ni à une variation de l'azote Kjeldhal, ni à une variation des nitrates.

Danamatuag	unitás	5	5	T	<u>'2</u>
Paramètres	unités	moyenne	écart-type	moyenne	écart-type
Température	degré C	12,8	5,3	13,2	5,6
O ₂ Dissous	mg/L	10,5	1,1	10,6	1,2
pН	unités	8,1	0,1	8,1	0,1
Conductivité	μS/cm	321	24,9	328	27,4
MEST	mg/L	26,7	28,5	23,3	22,1
MESO	mg/L	2,1	1,3	1,9	1,2
DBO	mg/L	2	0,0	2	0,4
DCO	mg/L	3	1,2	3	1,4
NK	mg/L	0,2	0,04	0,3	0,07
NO_3^-	mg/L	3,2	0,7	3,3	0,8
$\mathrm{NH_4}^+$	mg/L	0,04	0,02	0,10	0,07
P Total	mg/L	0,02	0,01	0,02	0,01
Chlorures	mg/L	9,5	2,2	9,8	2,3
Sulfates	mg/L	34,9	10,6	35,8	10,9
Coliformes	ufc/100 mL	2588	4514	2099	2696
E. coli	NPP/100 mL	905	1217	1616	2349
Entérocoques	NPP/100 mL	369	771	381	539

Tableau XV: Statistiques descriptives du fleuve

¹ Gérald Baillargeon, Méthodes statistiques de l'ingénieur, Les éditions SMG, ISBN2-89094-038-1, pp510-515, 1990

22

A l'exception de la concentration d'azote ammoniacal, les paramètres physico-chimiques et bactériologiques de l'eau du Rhône ne présentent donc pas de différence significative entre l'amont (S) et l'aval éloigné (T2) du point de rejet. La comparaison statistique des valeurs moyennes révèle une qualité similaire du fleuve. Les eaux usées épurées sont diluées en moyenne 577 fois par l'eau du Rhône, comme en 2015 (1:573) et 2014 (1:564). Cette dilution contribue probablement à l'impossibilité de quantifier l'impact du rejet, malgré un facteur de dilution plus faible qu'en 2013 (1:630) ou 2012 (1:600).

V.2. Cas du faible débit du Rhône

La campagne du 20 septembre 2016 a été réalisée en période de faible débit du Rhône (334 m³/s) et permet de mieux apprécier l'éventuel impact des eaux usées épurées sur la qualité du fleuve, grâce à une dilution plus faible du rejet par le Rhône. Les caractéristiques du rejet (R) et de l'eau du Rhône aux points amont (S), aval proche (T1) et aval éloigné (T2) sont présentées dans le tableau XVI.

Les campagnes du 18 octobre et du 13 décembre sont également prises en compte dans cette comparaison puisque le débit du Rhône égale respectivement 134 m³/s et 160 m³/s. A la différence de la campagne spécifique, le Rhône n'est pas échantillonné en T1 (tableaux XVII et XVIII).

On peut, selon les campagnes, observer une augmentation de la DBO, de l'azote Kjeldhal, des nitrates, des indicateurs de qualité microbiologique et de certains ETM (Al, As, Cd, Cu, Fe, Ni et Zn).

Lors de la campagne de septembre, la population bactérienne (E. coli) augmente d'une unité logarithmique de S à T2. On observe la même évolution pour la campagne du 18 octobre (coliformes et E. coli). On peut donc conclure à une différence de qualité bactériologique entre l'amont et l'aval lors de certains jours de très faibles débits du Rhône. Cette augmentation n'est pas observable pour la campagne de décembre.

La comparaison des paramètres mesurés aux points amont (S) et aval (T2) du rejet des eaux usées traitées montre en revanche une augmentation systématique de la conductivité et de l'azote ammoniacal. La concentration d'azote ammoniacal dans le fleuve est toujours plus élevée à l'aval éloigné qu'à l'amont du rejet depuis 2004. Cette forme réduite de l'azote est présente dans les eaux naturelles par apport d'eaux usées domestiques ou d'effluents d'élevage, par la réduction des nitrates sous l'effet de bactéries ou encore suite à la biodégradation des matières organiques azotées. Les conditions d'oxygénation de l'eau du Rhône (8,9 mg/L <[O2]< 12,0 mg/L) ne permettent pas d'envisager la réduction des nitrates en ammonium. L'apport par le rejet d'ammonium et de matière organique azotée (convertie en NH₄ $^+$ dans le fleuve) explique probablement cette augmentation. Toutefois, il est impossible d'exclure formellement un apport supplémentaire d'azote réduit (Norganique ou Nammoniacal) dans le Rhône entre R et T2.

PARAMETRES	unités	2	0/09/20	16	20/09/2016
		S	T1	T2	R
Débit	m ³ /s		334		0,55
Température	degré C	19,1	19,3	19,6	20,5
O2 Dissous	mg/L	9,0	8,9	8,9	3,4
pН	unités	8,3	8,2	8,3	8,0
Conductivité	μS/cm	286	343	289	959
MEST	mg/L	25,0	32,0	27,4	6,7
MESO	mg/L	0,0	1,0	0,0	5,0
DBO	mg/L	<2	3	3	7
DCO	mg/L	3	5	3	49
NK	mg/L	<0,2	2,2	0,3	16,6
$\mathbf{NH_{4}^{+}}$	mg/L	0,02	1,6	0,09	18,1
NO ₃ -	mg/L	2,6	5,1	2,6	40,0
PO ₄ ³ -	mg/L	0,02	0,07	0,02	0,38
P total	mg/L	0,03	0,07	0,03	0,56
Coliformes	ufc/100mL	330	26000	560	48000
E. coli	NPP/100mL	<38	5800	400	48000
Entérocoques	NPP/100ml	<38	260	<38	1300
Chlorures	mg/L	10	17	10	
Sulfates	mg/L	45,0	44,8	45,4	
Déter. anio.	μg/L	< 50	92	< 50	229
Hydro. totaux	μg/L	< 50	< 50	< 50	<50
Al	μg/L	240	199	266	<20
As	μg/L	1,7	1,6	1,9	<5
Cd	μg/L	<0,02	0,021	0,022	<0,2
Cr	μg/L	<0,5	<0,5	< 0,5	<5
Cu	μg/L	4,1	4,7	3,2	17
Fe	μg/L	408	403	464	373
Hg	μg/L	<0,01	<0,01	<0,01	<0,05
Ni	μg/L	1,1	1,7	1,3	<10
Pb	μg/L	0,76	0,71	0,71	0,6
Zn	μg/L	2,3	4,1	2,0	13

Tableau XVI : Caractéristiques du Rhône et du rejet en « faible » débit

PARAMETRES	unités	1	8/10/2016	18/10/2016
		S	Т2	R
Débit	m ³ /s		134	0,65
Température	degré C	14,5	15,1	18,1
O2 Dissous	mg/L	9,7	9,7	3,1
pН	unités	8,1	8,1	7,9
Conductivité	μS/cm	324	335	1087
MEST	mg/L	13,2	1,7	10,8
MESO	mg/L	0,4	0,4	9,2
DBO	mg/L	<2	2	16
DCO	mg/L	3	3	49
NK	mg/L	0,3	0,4	23,6
$\mathrm{NH_{4}^{+}}$	mg/L	0,06	0,30	25,6
NO ₃ -	mg/L	3,9	4,2	27,7
PO ₄ 3-	mg/L	0,03	0,04	0,53
P total	mg/L	0,04	0,04	0,84
Coliformes	ufc/100mL	270	3100	
E. coli	NPP/100mL	38	2200	
Entérocoques	NPP/100ml	<38	<38	
Chlorures	mg/L	11	12	
Sulfates	mg/L	41,0	43,4	
Déter. anio.	μg/L	< 50	< 50	220
Hydro. totaux	μg/L	< 50	< 50	<50
Al	μg/L	183	34,8	27
As	μg/L	1,4	1,2	<5
Cd	μg/L	<0,02	<0,02	<0,2
Cr	μg/L	<0,5	<0,5	<5
Cu	μg/L	3,6	6,3	21
Fe	$\mu g/L$	237	49,0	600
Hg	μg/L	<0,01	<0,01	<0,05
Ni	μg/L	<1	<1	<10
Pb	μg/L	0,45	0,12	0,9
Zn	μg/L	<2	5,9	65

Tableau XVII : Caractéristiques du Rhône et du rejet en « faible » débit $(2^{\grave{e}me}\ campagne)$

PARAMETRES	unités	13	3/12/2016	13/12/2016
		S	T2	R
Débit	m ³ /s		160	0,57
Température	degré C	7,2	7,1	14,0
O2 Dissous	mg/L	12,0	11,7	3,5
pН	unités	8,0	8,1	8,0
Conductivité	μS/cm	328	335	1110
MEST	mg/L	3,3	2,6	13,4
MESO	mg/L	1,2	1,6	12,4
DBO	mg/L	<2	<2	10
DCO	mg/L	3	2	51
NK	mg/L	<0,2	0,3	24,8
$\mathbf{NH_{4}^{+}}$	mg/L	0,07	0,14	29,0
NO ₃ -	mg/L	3,9	3,8	26,3
P total	mg/L	0,02	0,03	0,73
Coliformes	ufc/100mL	810	360	
E. coli	NPP/100mL	160	38	
Entérocoques	NPP/100ml	38	<38	
Chlorures	mg/L	11	11	
Sulfates	mg/L	45,0	45,8	

Tableau XVIII : Caractéristiques du Rhône et du rejet en « faible » débit $(3^{\grave{e}me}\; campagne)$

CONCLUSION

Dans le cadre de la 34^{ème} année du contrôle des caractéristiques des eaux épurées du bassin versant du Lac du Bourget et de leur impact sur la qualité du Rhône, douze campagnes mensuelles de prélèvements ont été effectuées en 2016 selon les directives de l'arrêté préfectoral du 29 août 2013.

L'année 2016 se caractérise par une pluviométrie (1225,9 mm) inférieure de 5,1% à celle de l'année précédente (1291,8mm) et de 4,25% à la référence 1974-2004 (1280 mm). Le débit du Rhône, milieu naturel récepteur du rejet, vaut en moyenne 450 m³/s (en hausse de 7,7% par rapport à 2015 : 418 m³/s), ce qui implique une dilution importante des composés présents dans le rejet au point de contrôle situé à l'aval éloigné du lieu de déversement (point T2).

Depuis 2012, la qualité du rejet s'est améliorée. Cette année, ceci se traduit par aucun dépassement des paramètres réglementés par l'arrêté préfectoral et par une baisse des flux. Le flux de nitrates est équivalent à ceux de 2013 et 2012, plus élevé que ceux de 2015 et 2014 et qu'avant 2012 en raison de la nitrification efficace de l'azote dans l'UDEP de Chambéry Métropole.

Selon le système d'évaluation de la qualité des eaux, le Rhône est de qualité microbiologique moyenne (E. coli en S) et médiocre (E. coli en T2 et entérocoques). En revanche, la qualité physico-chimique est très bonne à bonne (déclassement observé pour les MEST en T2, le pH max et le cuivre) à moyenne (MEST en S).

Quel que soit le débit du Rhône, la concentration en ammonium est systématiquement supérieure en T2. Pour certains jours de faible débit du Rhône (campagnes du 20 septembre et du 18 octobre), une dégradation significative de la qualité bactériologique est également constatée.

ANNEXE I: RESULTATS BRUTS DU REJET

PARAMETRES	unités	19/01/16	16/02/16	22/03/16	19/04/16	17/05/16
Débit	m ³ /s	0,88	1,04	0,76	0,88	0,82
Température	degré C	12,5	12,3	13,9	14,5	15,7
O ₂ Dissous	mg/L	5,4	5,7	4,0	5,1	4,6
pН	Unités	7,6	7,6	7,6	7,7	7,7
Conductivité	μS/cm	917	849	1011	802	846
MEST	mg/L	12,6	9,6	9,6	7,6	8,0
MESO	mg/L	9,0	7,2	9,0	5,0	6,2
DBO	mg/L	9	15	7	4	6
DCO échant. brut	mg/L	40	33	44	30	36
DCO échant. filtré	mg/L	33	25	34	24	26
NK	mg/L	13,6	12,7	19,2	10,2	9,7
NO ₃ -	mg/L	21,3	21,0	29,6	30,3	34,6
P total	mg/L	0,44	0,26	0,51	0,41	0,45
Coliformes	ufc/100 mL					
E. coli	ufc/100 mL					
Entérocoques	ufc/100 mL					
NH_4^+	mg/L	14,2	11,9	20,2	9,3	10,5
PO ₄ ³ -	mg/L				0,25	
Déter. anio.	μg/L				165	
Hydro. totaux	μg/L				< 50	
Al	μg/L				28	
As	μg/L				<5	
Cd	μg/L				<0,2	
Cr	μg/L				<5	
Cu	μg/L				16	
Fe	μg/L				257	
Hg	μg/L				< 0,05	
Ni	μg/L				<10	
Pb	μg/L				<0,5	
Zn	μg/L				49	

PARAMETRES	unités	21/06/16	19/07/16	23/08/16	20/09/16	18/10/16	22/11/16	13/12/16
Débit	m ³ /s	1,28	0,62	0,53	0,55	0,65	0,93	0,57
Température	degré C	16,3	19,6	20,6	20,5	18,1	14,8	14,0
O ₂ Dissous	mg/L	6,7	2,5	2,9	3,4	3,1	5,2	3,5
pН	Unités	7,7	7,9	8,0	8,0	7,9	7,9	8,0
Conductivité	μS/cm	786	972	1059	959	1087	904	1110
MEST	mg/L	8,0	8,0	9,2	6,7	10,8	11,0	13,4
MESO	mg/L	3,8	4,8	8,6	5,0	9,2	8,8	12,4
DBO	mg/L	5	12	24	7	16	9	10
DCO échant. brut	mg/L	26	47	52	49	49	38	51
DCO échant. filtré	mg/L	21	36	45	36	39	30	33
NK	mg/L	7,6	13,0	14,9	16,6	23,6	17,6	24,8
NO ₃ -	mg/L	31,2	46,9	46,0	40,0	27,7	20,6	26,3
P total	mg/L	0,19	0,84	0,72	0,56	0,84	0,37	0,73
Coliformes	ufc/100 mL				48000	·	·	
E. coli	ufc/100 mL				48000			
Entérocoques	ufc/100 mL				1300			
NH ₄ ⁺	mg/L	5,3	14,4	18,9	18,1	25,6	17,3	29,0
PO ₄ ³⁻	mg/L				0,38	0,53		
Déter. anio.	μg/L				229	220		
Hydro. totaux	μg/L				< 50	< 50		
Al	μg/L				<20	27		
As	μg/L				<5	<5		
Cd	μg/L				<0,2	<0,2		
Cr	μg/L				<5	<5		
Cu	μg/L				17	21		
Fe	μg/L				373	600		
Hg	μg/L				< 0,05	< 0,05		
Ni	μg/L				<10	<10		
Pb	μg/L				0,6	0,9		
Zn	μg/L				13	65		

ANNEXE II: RESULTATS BRUTS DU RHONE

DADAMETER		19/01	/2016	16/02	/2016	22/03	/2016	19/04	/2016	17/05	7/2016	21/06	/2016
PARAMETRES	unités	\mathbf{S}	T2	\mathbf{S}	T2	S	T2	S	T2	\mathbf{S}	T2	S	T2
Débit	m^3/s	55	50	64	45	3	85	72	25	43	30	1050	
Température	degré C	5,9	6,0	7,0	7,0	9,6	9,9	10,5	11,5	12,8	13,6	15,8	16,5
O ₂ Dissous	mg/L	11,1	11,2	11,4	11,4	11,5	11,7	10,7	11,0	11,0	10,9	10,1	11,9
pН	Unités	7,9	8,0	8,0	8,1	8,1	8,1	8,1	8,1	8,2	8,2	8,1	8,1
Conductivité	μS/cm	359	375	360	368	348	353	314	315	326	331	316	328
MEST	mg/L	8,4	9,8	15,4	16,6	4,6	3,8	42,2	42,4	8,3	8,6	101,2	61,6
MESO	mg/L	1,8	2,0	2,6	2,2	2,8	2,8	3,6	3,6	1,7	1,2	4,1	2,7
DBO	mg/L	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
DCO	mg/L	3	3	4	4	3	2	5	5	3	3	2	2
	mg/L	0,3	0,3	<0,2	0,2	<0,2	0,2	0,2	0,3	<0,2	0,2	<0,2	<0,2
NO ₃ -	mg/L	4,4	4,4	4,0	4,1	3,1	3,4	3,0	3,1	2,7	2,9	2,3	2,2
P Total	mg/L	0,02	0,02	0,02	0,02	0,01	0,01	0,03	0,03	0,02	0,02	0,01	0,01
Chlorures	mg/L	14	14	10	11	9,8	10	6,8	6,6	7,3	7,5	8,5	9,2
Sulfates	mgSO ₄ /L	39,3	41,4	25,1	26,6	32,0	35,6	19,4	18,7	25,3	25,7	33,1	34,4
Coliformes	ufc/100 mL	3000	1000	2300	2700	200	68	16000	8000	260	180	2000	1600
E. coli	NPP/100 mL	1600	80	2900	3600	80	<38	3600	6900	<38	80	920	360
Entérocoques	NPP/100 mL	160	840	470	930	<38	<38	790	890	<38	<38	40	40
NH ₄ ⁺	mg/L	0,06	0,09	0,04	0,08	0,01	0,06	0,06	0,10	0,03	0,06	0,03	0,04
PO ₄ ³⁻	mg/L							0,02	0,02				
Déter. anio.	μg/L							< 50	< 50				
Hydro. totaux	μg/L							< 50	< 50				
Al	μg/L							287	277				
As	μg/L							0,73	0,70				
Cd	μg/L							< 0,02	< 0,02				
Cr	μg/L							0,88	0,73				
Cu	μg/L							4,4	3,3				
Fe	μg/L							375	301				
Hg	μg/L							< 0,01	< 0,01				
	μg/L							1,4	1,2				
Pb	μg/L							0,75	0,54				
Zn	μg/L							4,3	4,3				

DADAMEEDEG	•••	19/07/	2016	23/08	/2016	20/09	/2016	18/10	/2016	22/11	/2016	13/12	/2016
PARAMETRES	unités	\mathbf{S}	T2	S	T2	S	T2	S	T2	S	T2	S	T2
Débit	m^3/s	61	1	48	31	334 13		34	60	608		160	
Température	degré C	20,3	20,9	20,8	21,6	19,1	19,6	14,5	15,1	9,6	9,6	7,2	7,1
O ₂ Dissous	mg/L	9,0	8,8	8,8	8,8	9,0	8,9	9,7	9,7	11,1	11,0	12,0	11,7
pН	Unités	8,2	8,2	8,2	8,2	8,3	8,3	8,1	8,1	8,1	8,1	8,0	8,1
Conductivité	μS/cm	293	299	293	297	286	289	324	335	307	313	328	335
MEST	mg/L	24,8	27,2	15,4	13,2	25,0	27,4	13,2	1,7	58,4	64,5	3,3	2,6
MESO	mg/L	2,2	1,6	1,0	1,2	0,0	0,0	0,4	0,4	3,6	4,0	1,2	1,6
	mg/L	<2	<2	2	3	<2	3	<2	2	<2	2	<2	<2
DCO	mg/L	3	3	2	3	3	3	3	3	6	7	3	2
NK	mg/L	<0,2	<0,2	<0,2	<0,2	<0,2	0,3	0,3	0,4	<0,2	0,3	<0,2	0,3
NO ₃	mg/L	2,3	2,3	2,7	2,6	2,6	2,6	3,9	4,2	3,7	3,8	3,9	3,8
P Total	mg/L	0,01	0,01	0,03	0,03	0,03	0,03	0,03	0,04	0,02	0,02	0,02	0,03
Chlorures	mg/L	9,7	9,9	10	10	10	10	11	12	5,9	6,0	11	11
Sulfates	mgSO ₄ /L	45,4	45,9	48,2	48,2	45,0	45,4	41,0	43,4	19,4	18,7	45,0	45,8
	ufc/100 mL	240	470	240	250	330	560	270	3100	5400	6900	810	360
E. coli	NPP/100 mL	120	80	260	510	<38	400	38	2200	1100	5100	160	38
Entérocoques	NPP/100 mL	<38	<38	<38	<38	<38	<38	<38	<38	2700	1600	38	<38
NH ₄ ⁺	mg/L	0,02	0,05	0,03	0,07	0,02	0,09	0,06	0,30	0,03	0,08	0,07	0,14
PO ₄ ³ -	mg/L					0,02	0,02	0,03	0,04				
	μg/L					< 50	< 50	< 50	< 50				
Hydro. totaux	μg/L					< 50	< 50	< 50	< 50				
Al	μg/L					240	266	183	34,8				
As	μg/L					1,7	1,9	1,4	1,2				
Cd	μg/L					< 0,02	0,022	< 0,02	< 0,02				
Cr	μg/L					<0,5	<0,5	<0,5	<0,5				
Cu	μg/L					4,1	3,2	3,6	6,3				
Fe	μg/L					408	464	237	49,0				
Hg	μg/L					< 0,01	< 0,01	< 0,01	< 0,01				
	μg/L					1,1	1,3	<1	<1				
Pb	μg/L					0,76	0,71	0,45	0,12				
Zn	μg/L					2,3	2,0	<2	5,9				